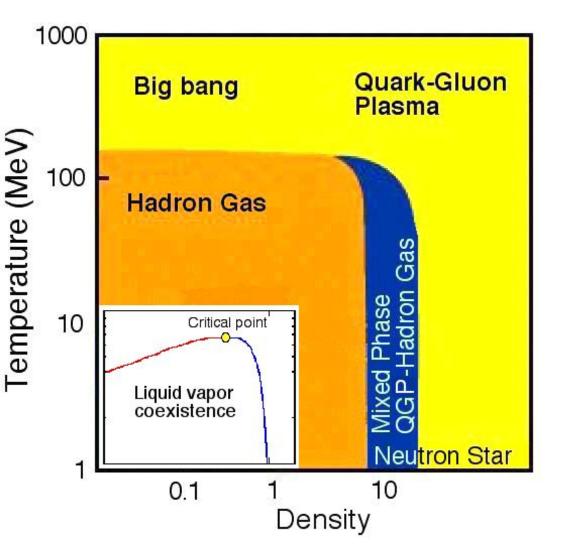
Lessons Learned: Liquid-Vapor Nuclear Matter Phase Diagram

Larry Phair, P.T. Lake, L. G. Moretto Nuclear Science Division, Lawrence Berkeley National Lab

History & why you should care

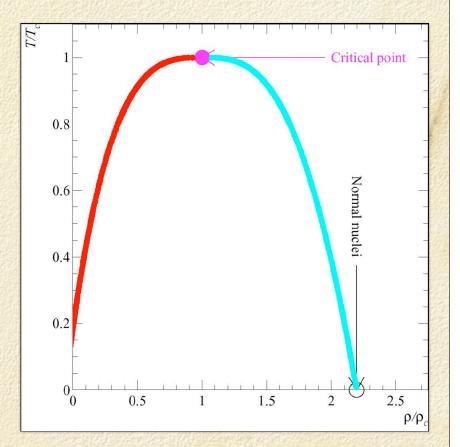
- 80's and 90's: characterization of the liquid vapor phase transition
 - multifragmentation:
 "new" process
- Lessons learned in producing the phase diagram



Why there are so few nuclear phase diagrams...

The liquid vapor phase diagram – 3 problems:

- 1. Finite size: How to scale to the infinite system?
- 2. Coulomb: Long range force
- No vapor in equilibrium with a liquid drop. Emission into the vacuum.



Ideal gas law and cluster picture

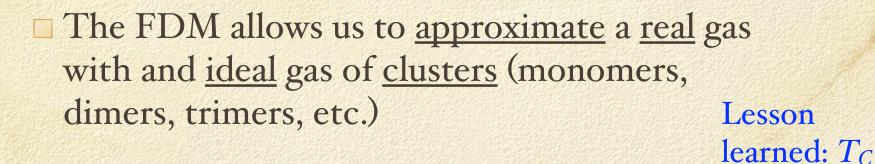
Non-ideal gas of monomers, write it in terms of partial pressures of the clusters (of size A)

Pressure: $p(T) = \sum_{A} p_A(T) = T \sum_{A} n_A(T),$ Density: $\rho = \sum_{A} An_A(T),$

Cluster concentrations (n_A) are everything

Fisher Droplet Model (FDM)

FDM developed to describe formation of drops in <u>macroscopic</u> fluid



□ The FDM provides a general formula to describe the concentrations $n_A(T)$

$$n_{A}(T) = \underbrace{g(A)}_{q_{0}} \exp\left(-\frac{c_{0}A^{\sigma}}{T}\right) = q_{0}A^{-\tau} \exp\left(c_{0}A^{\sigma}\left[\frac{1}{T_{c}} - \frac{1}{T}\right]\right)$$

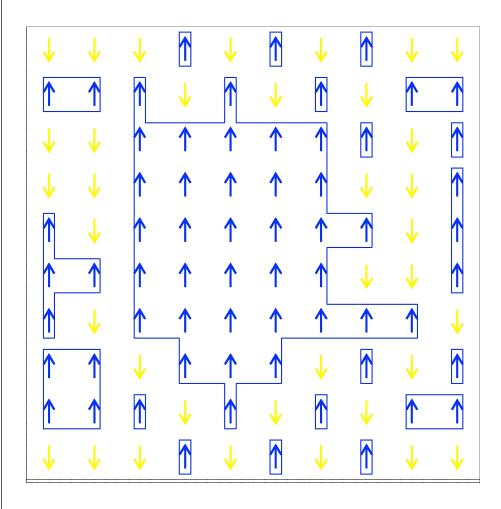
$$q_{0}A^{-\tau} \exp\left(\omega A^{\sigma}\right) \qquad \omega = \frac{c_{0}}{T_{c}} \qquad \text{surface free energy}$$

and c_0 appear

together

I. Finite size effects:
Complement
Moretto et al. PRL 94, 2027OF (2005)
Moretto et al. PRL 94, 2027OF (2005)
Moretto et al. PRL 94, 2027OF (2005)
Admits the same
$$T_c$$
 as the
infinite system, and c_0
 $n_A(T) = g(A) \exp\left(-\frac{E_S(A)}{T}\right) = q_0 A^{-\tau} \exp\left(-\frac{c_0}{c_0}A^{\sigma}\left(\frac{1}{T} - \frac{1}{T_c}\right)\right)$
Finite liquid drop $(A_0) = (a_0 A^{-\tau} (A_0 - A) + E_S(A_0 - A) - E_S(A_0))$
 $n_A(T, A_0) = \frac{g(A)g(A_0 - A)}{g(A_0)} \exp\left(-\frac{E_S(A) + E_S(A_0 - A) - E_S(A_0)}{T}\right)$
Fisher+Complement
 $n_A(T, A_0) = q_0 \frac{A^{-\tau}(A_0 - A)^{-\tau}}{A_0^{-\tau}} \exp\left(-\frac{c_0}{c_0}A^{\sigma} + (A_0 - A)^{\sigma} - A_0^{\sigma}\right)\left(\frac{1}{T} - \frac{1}{T_c}\right)$

Ising model (or lattice gas)



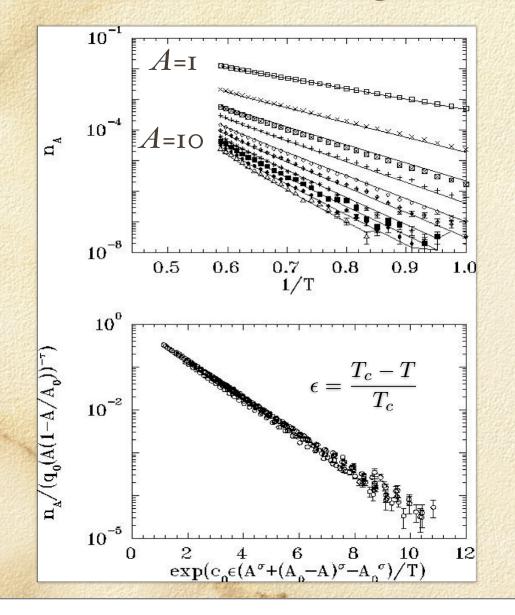
- Magnetic transition
- Isomorphous with liquidvapor transition
- Hamiltonian for *s*-sites and *B*-external field

$$H = -\sum_{ij} J_{ij} s_i s_j - B \sum_{i=1}^N s_i$$

$$s = \begin{cases} 1 \\ -1 \end{cases} \implies \frac{s+1}{2} = \begin{cases} 1, \text{ occupied} \\ 0, \text{ empty} \end{cases}$$

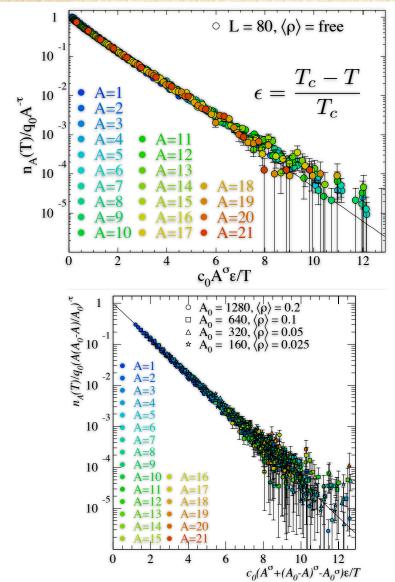
 $J_{ij} = \begin{cases} J, i \text{ and } j \text{ neighboring sites} \\ 0, \text{ otherwise} \end{cases}$

Test Complement with Ising model



 \square 2d lattice, *L*=40, ρ =0.05, ground state drop $A_0 = 80$ Regular Fisher, $T_c=2.07$ Taking into account the finite system $T_c = 2.32 \pm 0.02$ to be compared with the theoretical value of 2.27... Can we declare victory?

Scale many systems (Ising droplets)

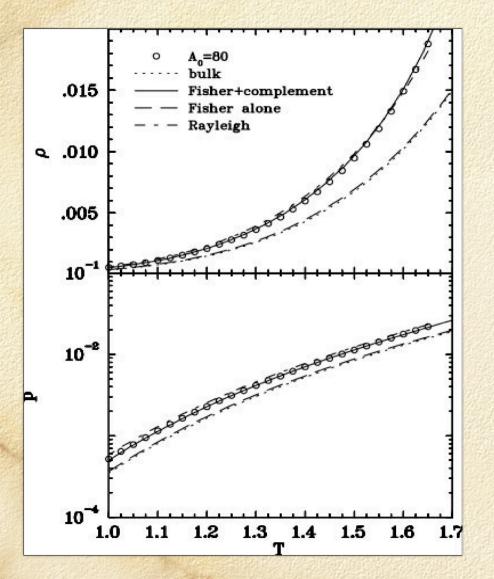


Lesson learned: finite systems – coexistence ends long before T_c $T_c = 2.29 \pm 0.01$ for the free magnetization case to be compared with the theoretical value of 2.27...

 $\Box T_c = 2.30 \pm 0.01$ for the fixed magnetization

Lesson learned: with the right physical picture, **all** of the data point to T_c

From finite pressure and density to bulk values



Onsager solution for the magnetization mapped to density (dotted line)

Fisher+complement

■ Let $A_0 \rightarrow \infty$ (dashed line), recover Onsager!

 $\lim_{A_0 \to \infty} n_A(A_0, T) = n_A(T)$

Lesson learned: *T_c* is a property of the infinite system **Problem 1: Finite size**

Fisher+complement $\lim_{A_0 \to \infty} n_A(A_0, T) = n_A(T)$ Fisher

How to scale to the infinite system? <u>Solved.</u> Put a liquid drop "extension" (complement) into the Fisher formula.

- At the same level of approximation as the original Fisher expression
 - Start with a finite system, recover bulk T_c , c_0 , density and pressure values

And vice versa, start with infinite system and go to finite system

Problem 2: Coulomb – definition of phases (?)

□ Phases are uniform homogeneous systems
 □ Phase transitions ⇒ short range interactions
 □ Long range interactions: difficult to define phases

What to do with the Coulomb energy?

 $\Box E_{c} = E_{DSE} + E_{DV} + E_{VSE}$

 $\Box E_{DSE}$: Drop self energy (EASY)

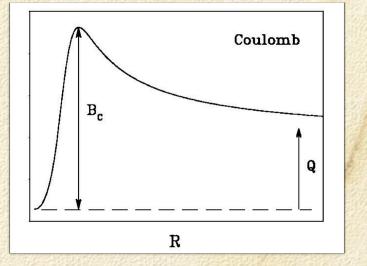
E_{DV}: Drop-vapor interaction energy. (Take the vapor at infinity!!)

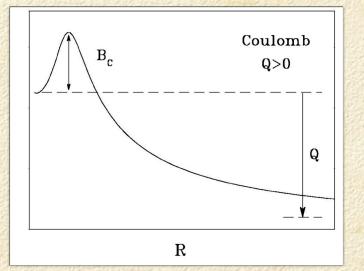
 $\Box E_{VSE}$: Vapor self energy. (Diverges for an infinite amount of vapor!!)

The problem of the droplet-vapor interaction

If each cluster is bound (Q<0), OK.

If at least one cluster seriously unbound (|Q|>>T), then trouble.
 Entropy problem. ΔF = ΔE - TΔS
 For a dilute phase at infinity, this spells disaster!
 At infinity,
 ΔE is very negative
 ΔS is very positive
 ΔF can never become zero.





Vapor self energy

- Infinite vapor, self energy diverges (with Coulomb)
 Try taking a small sample of a dilute vapor so that *E_{VSE}/A << T*
- Alternatively, we could consider a finite box containing a finite system. Unfortunately, at any other distance smaller than infinity the result depends annoyingly on the size (and shape) of the container!
 inelegant and non-general situation leading to confusing questions about true equilibrium.

Use a box? Results will depend on size (and shape!) of box.

A box provided by nature is the only way out!

Solution: make your own box

Van der Waals liquid, ∆H_m increases with increasing A and saturates for infinite systems. Add Coulomb. Put it in a box.
 E_b ≈ a_vA + a_sA^{2/3} + a_cZ² (1/(A^{1/3}) - 1/(nA^{1/3}))
 ∆H_m begins to decrease when ∂µ/∂A=0,

$$\hat{A} = \frac{1}{5} \frac{a_s}{a_c} \frac{1}{K^2} \frac{n}{n-1}, \quad K = \frac{Z}{A}$$

A,Z

²⁰⁸Pb

6K

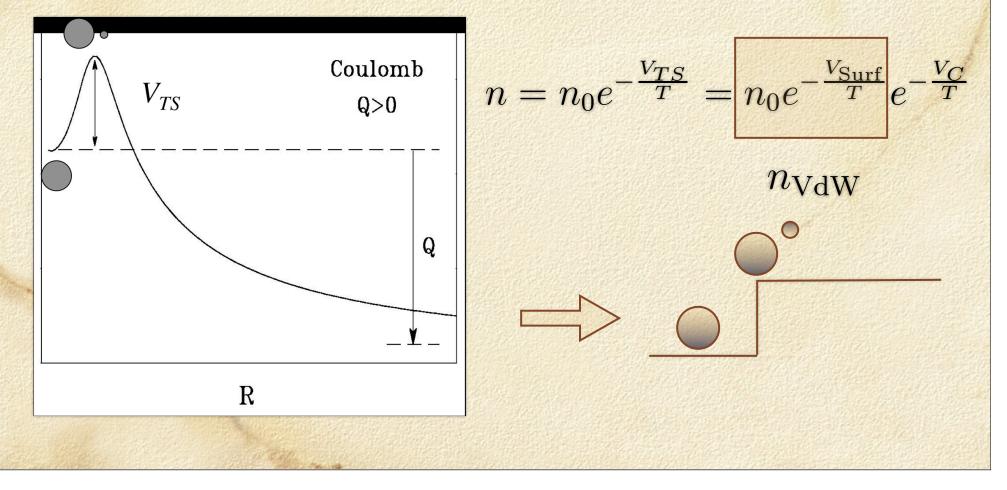
- Without a box, or as $n \rightarrow \infty$, A=29 is where ΔH_m begins to decrease $V=1.56 V(^{208}P)$
- □ For ²⁰⁸Pb in a box, $\partial \mu / \partial A = 0$ when n = 1.16

 $(\mu = \Delta H_m = \partial E_k / \partial A$

Coulomb problem is "solved" ($\Delta F=0$ is possible), (to scale) but no room for vapor Lesson learned: We must define the phases if we are going to discuss phase transitions. Transition state

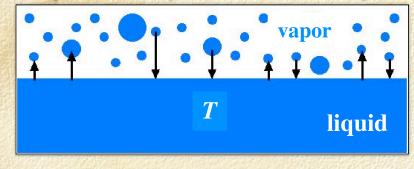
How to deal with Coulomb?

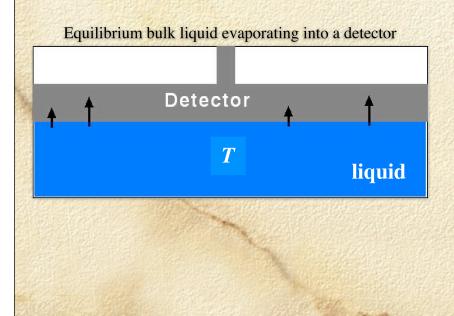
Van der Waals concentration



Problem 3: no physical vapor in equilibrium

Equilibrium bulk liquid in coexistence with its vapor





 Is there a gas phase in equilibrium with the droplet? (NO)

Can we still make a thermodynamic characterization of the gas phase? (YES)

$$\frac{\Gamma}{\hbar} = n_A(T) \left\langle v_A(T) \sigma(v_A) \right\rangle$$

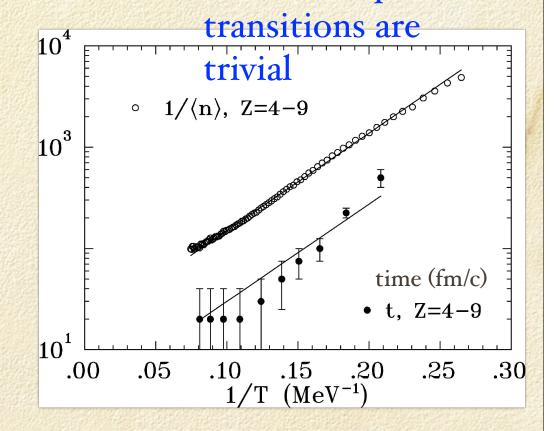
ISiS measured lifetimes compared to yields Lesson learned: First order phase

Experimentally measured lifetimes and yields both controlled by the **same** Boltzmann factor

$$\langle n \rangle \propto \Gamma \propto e^{-B/T}$$

$$t = \frac{h}{\Gamma} \propto e^{B/T}$$

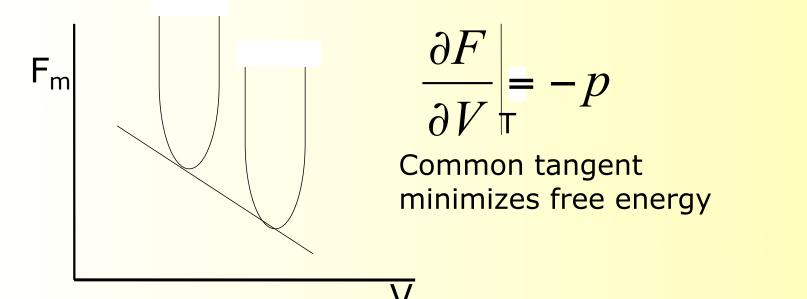
Evidence for a rate description of the physical process



Lifetimes: L. Beaulieu et al., Phys. Rev. Lett. **84**, 5971 (2001) & PRC **63**, 031302 (2002)

Yield comparison: L. G. Moretto et al., arXiv/nucl-ex/0209009, LBNL-51306 Consider two different phases like two condensed phases with different packing (e.g f.c.c. and b.c.c.).

Calculate for each the molar free energy as a function of V at constant T.



Conclusion: 1st order phase transitions are describable in terms of the thermodynamic properties of each phase considered independently. Equilibrium conditions do not require the contact of the two phases!

Solutions found

- Going from the finite system to the infinite system and vice versa: <u>Complement</u>
- Coulomb and defining phases: <u>Transition</u> <u>state</u> $E_f = E_{LD}(Z, Z)$
- No vapor: Use the rates (with Coulomb removed) and infer the concentrations of a "virtual" vapor

$$T = \sqrt{\frac{E^*}{A} 8 \left(1 + \frac{E^*}{E_{LD}(Z_0, A_0)} \right)}$$
$$A = 2Z \left(1 + \frac{E^*}{E_{LD}(Z, 2Z)} \right)$$

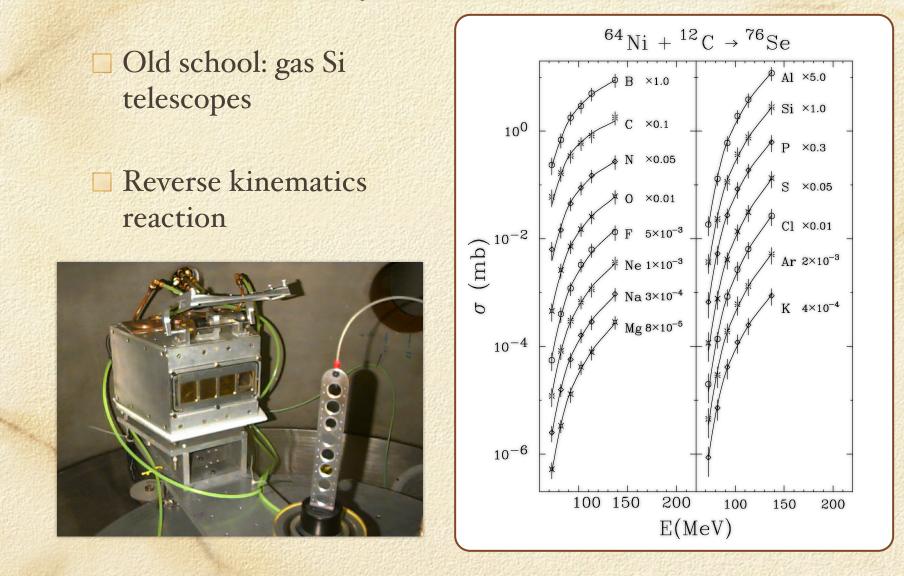
$$E_{i} = E_{LD}(Z_{0}, A_{0}) + E_{rot}(A_{0}, J)$$

$$A) + E_{LD}(Z_{0} - Z, A_{0} - A) + E_{rot}^{f} + \frac{Z(Z_{0} - Z)e^{2}}{r_{0}(A^{1/3} + (A_{0} - A)^{1/3}) + d}$$

$$L = L + L E^{*}$$

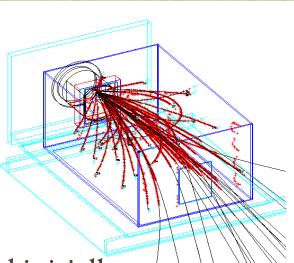
$$J = J_0 + J_1 E^*$$

Compound nucleus data (88-Inch Cyclotron)

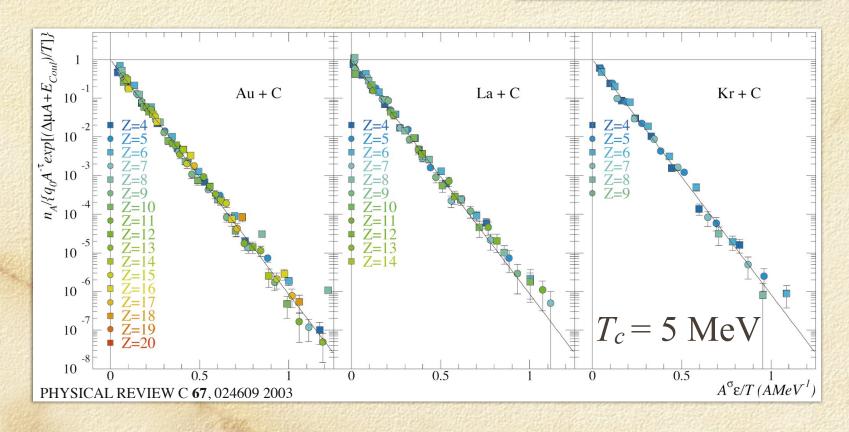


EOS TPC data (Bevelac)

🗆 E/A= 1 GeV



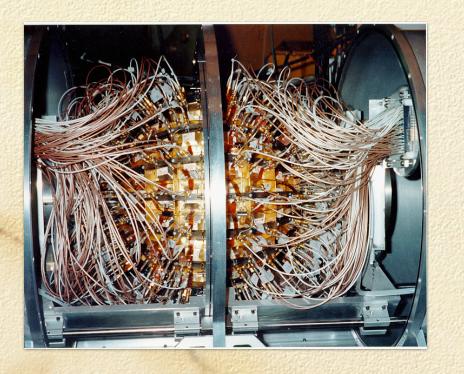
□ Finite size effects not appreciated initially

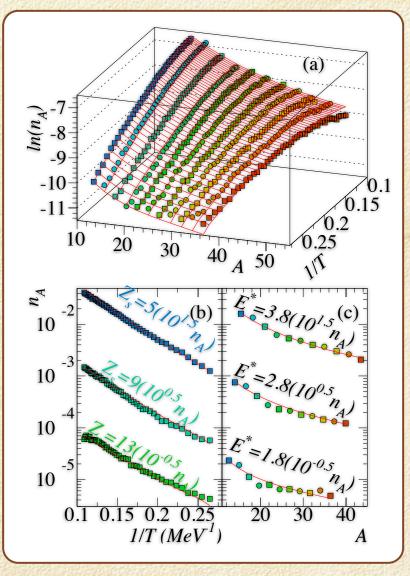


ISiS data (AGS)

Gas-Si-CsI sphere

 $\Box \pi$ + Au, E = 8 GeV

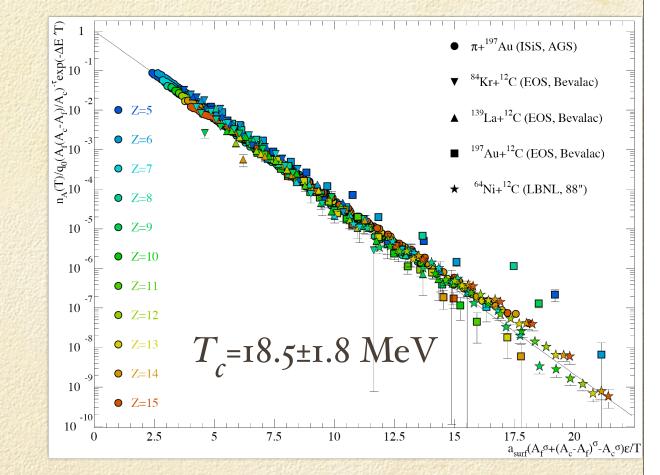




All data

 π + ¹⁹⁷Au, 8 GeV ⁸⁴Kr + ¹²C ¹³⁹La + ¹²C ¹⁹⁷Au + ¹²C *E/A* = 1 GeV

 64 Ni + 12 C *E*/*A* = 6-14 MeV



Thermodynamic aside

- Principle of corresponding states:
 - Cubic coexistence curve.
 - Empirically given by:

$$\frac{\rho_{l,g}}{\rho_c} = 1 + \frac{3}{4} \left(1 - \frac{T}{T_c} \right) \pm \frac{7}{4} \left(1 - \frac{T}{T_c} \right)^{1/3}$$

- + for liquid
- for vapor.
- Observed empirically in many fluids:
 - E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
 - J. Verschaffelt, Comm. Leiden 28, (1896).
 - J. Verschaffelt, Proc. Kon. Akad. Sci. Amsterdam 2, 588 (1900).
 - D. A. Goldhammer, Z.f. Physike. Chemie 71, 577 (1910).

1/3 is critical exponent β≈0.328

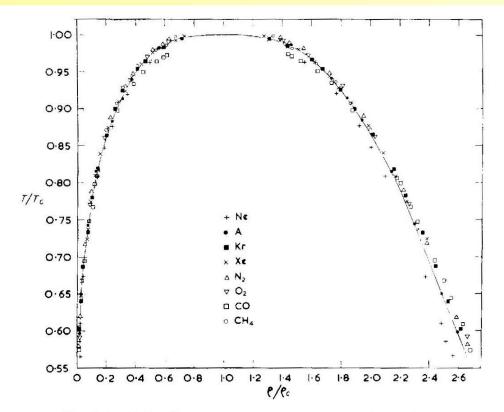
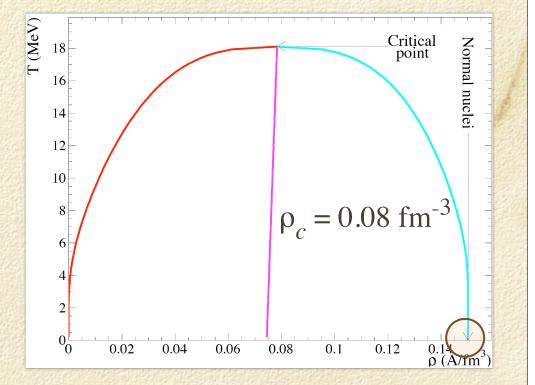


Fig. 3.11. Reduced densities of coexisting liquid and gas phases

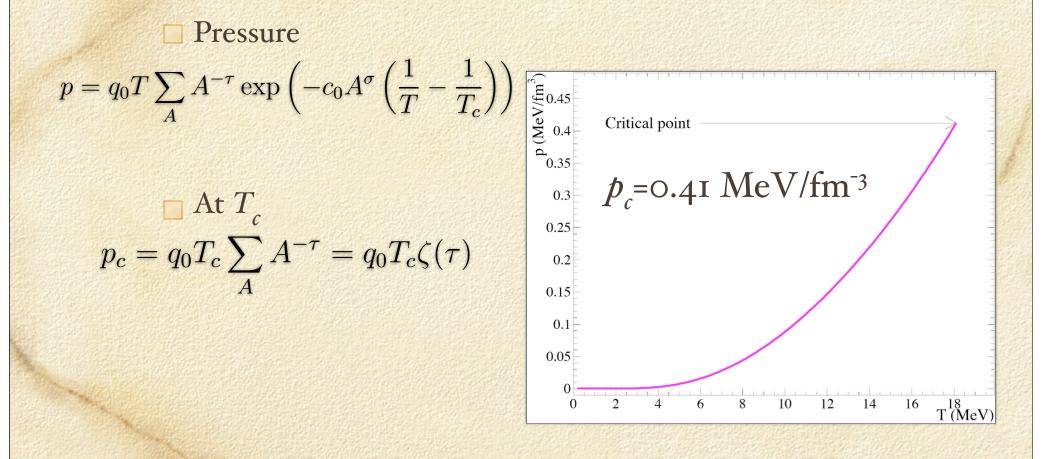
Density phase diagram for infinite system

Density (vapor branch) $\rho = q_0 \sum_{\Lambda} A^{1-\tau} \exp\left(-c_0 A^{\sigma} \left(\frac{1}{T} - \frac{1}{T_c}\right)\right)$ Liquid brach, Guggenheim scaling $\frac{\rho}{\rho_c} = 1 + b_1 \epsilon + b_2 \epsilon^\beta$ b_1 and b_2 are fit parameters $\epsilon = \frac{T_c - T}{T_c} \qquad \beta = \frac{\tau - 2}{\sigma} = .327$ Change sign of b_{1} for the liquid density $\frac{\rho_l}{\rho_l} = 1 - b_1 \epsilon + b_2 \epsilon^\beta$ ρ_c



T=0 is normal density; this sets the absolute density scale

Pressure phase diagram for infinite system



Conclusions

Solved three problems in the way of building a phase diagram of nuclear matter

- 1. Finite size effects: use complement
- 2. Coulomb: use transition state
- 3. No physical vapor: use rate picture

Now have a determination of the liquid-vapor coexistence line for infinite nuclear matter

T_c (MeV)	ρ_c (fm ⁻³)	p_c (MeV/fm ³)
18.5±1.8	0.077±0.018	0.41±.18

Lessons learned: physical picture (clusters)

- T_c and c_0 appear **together**
- You will get T_c wrong if you don't understand your finite size effects.
- T_c is a property of the infinite system. Didn't observe it.
 Couldn't even reach it. But all data point to it.
- We must carefully define the phases first before we discuss phase transitions. (Coulomb)
- Ist order phase transitions are trivial; they can be described in terms of the thermodynamic properties of each phase considered independently.

Lesson learned: discovery

Clausius-Clapeyron Equation:

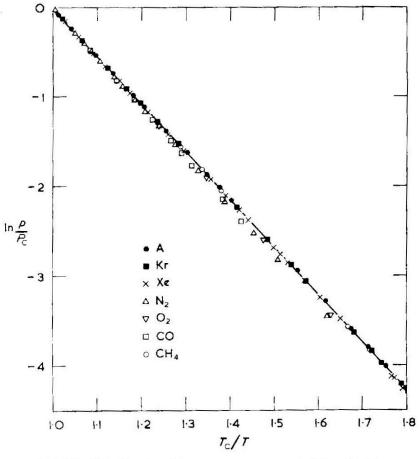
$$p = p_0 \exp\left(rac{-\Delta H}{T}
ight)$$
, valid when:

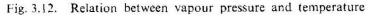
- vapor pressure ~ ideal gas
- molar enthalpy H_{evaporation} independent of T
- Neither true as $T \sim T_c$:
- The two deviations compensate:

$$\frac{p}{p_c} = \exp\left[\frac{-\Delta H}{T_c} \left(1 - \frac{T_c}{T}\right)\right]$$

Observed empirically for several fluids:

"Thermodynamics" E. A. Guggenheim.





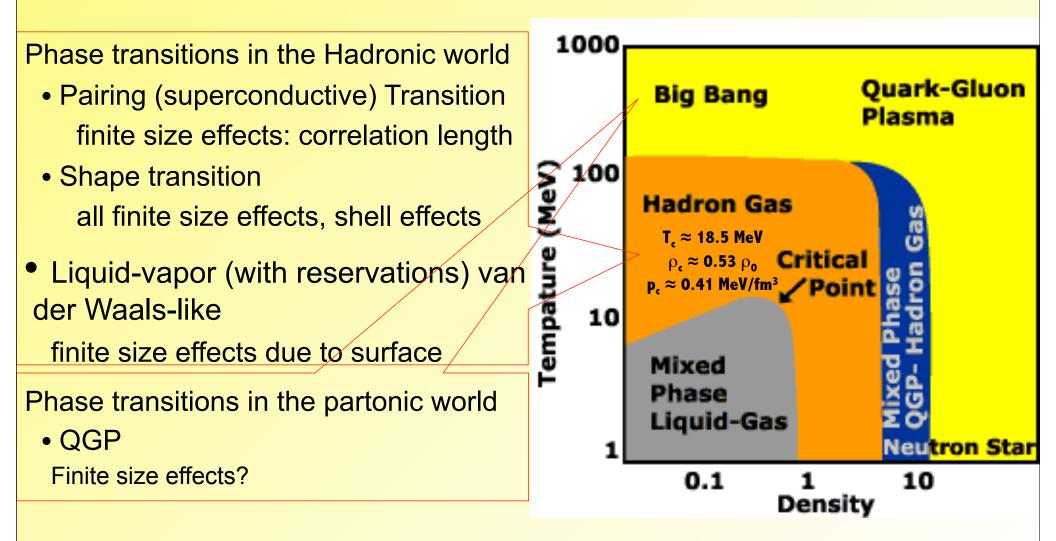
e⁺e⁻ collisions?

Discovery occurred shortly after neutrons could be described as evaporating

Lessons learned: what did not work

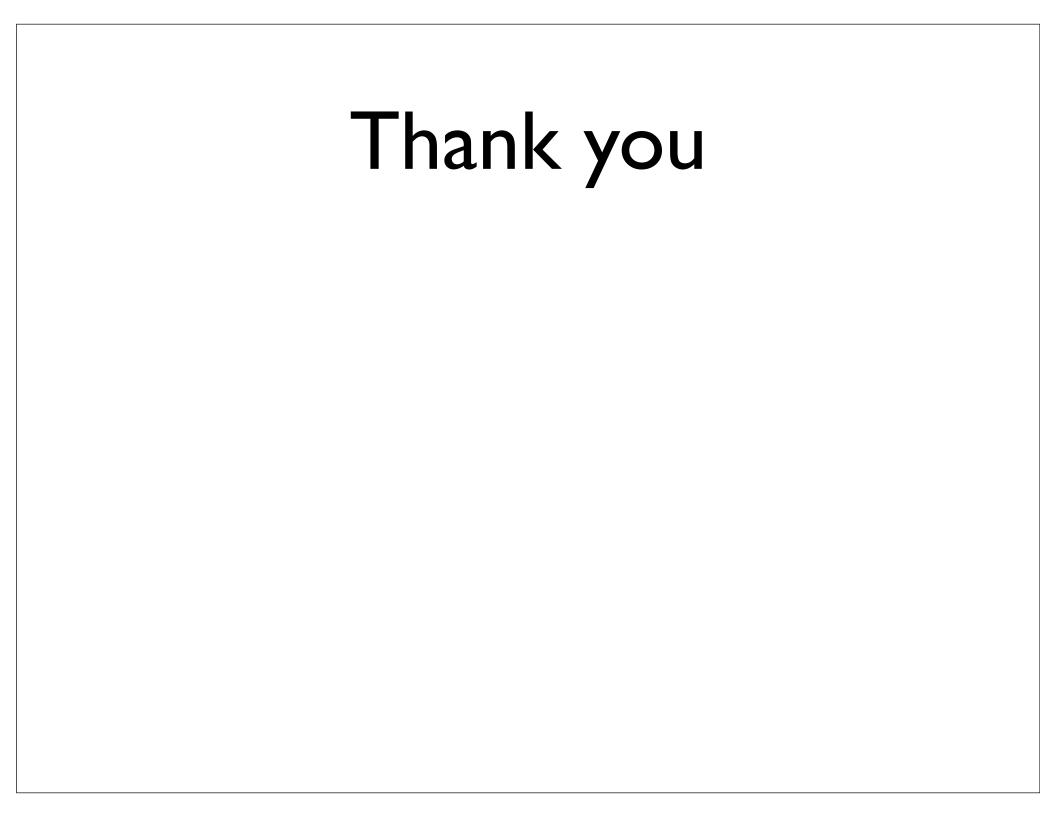
- Anything that had to do with fluctuations
 - Intermittency, moments of the mass distributions, etc. – finite size effects
- Energy scans, vary system size, etc.
 - Finite size effects prevent us from ever reaching the critical point.
 - However, with the right physical picture, all data "point" to the critical temperature

Phase transitions from Hadronic to Partonic Worlds



Using the lessons learned

	Real fluids	Liquid-vapor	QGP
Order parameter?	density	density	?
phases defined?	yes	yes	?
Finite size effects?	not relevant	yes, but solved	?
T _c and another observable?	yes, surface energy	yes, surface energy	?
Physical picture	ideal gas law	ideal gas law	?
First order phase transition	yes	yes	?
second (higher order) phase transition	yes at T_c and ρ_c	yes, at T _c and ρ _c for symmetric neutral infinite nuclear matter	?

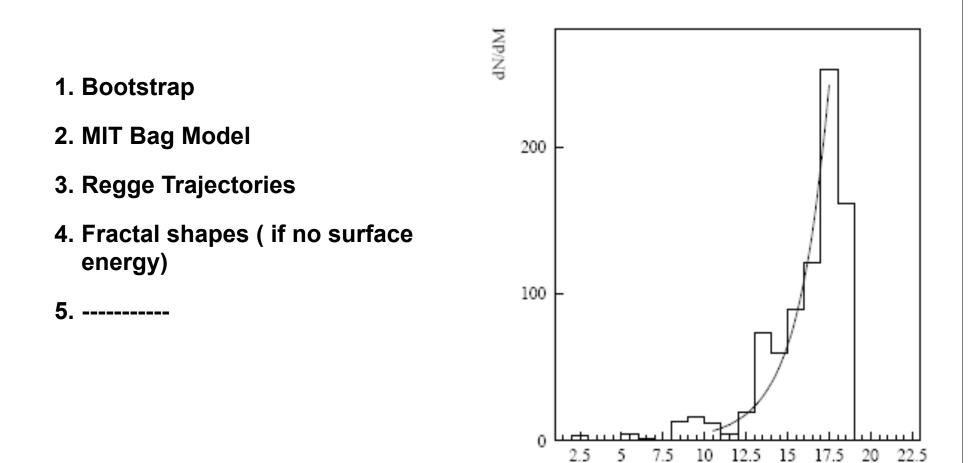


- A gas of bags : the gas that wasn't. *Instability against coalescence*
- Criticality? Fractality of bags.
- Can surface energy cure anything? NO

The source of all troubles....

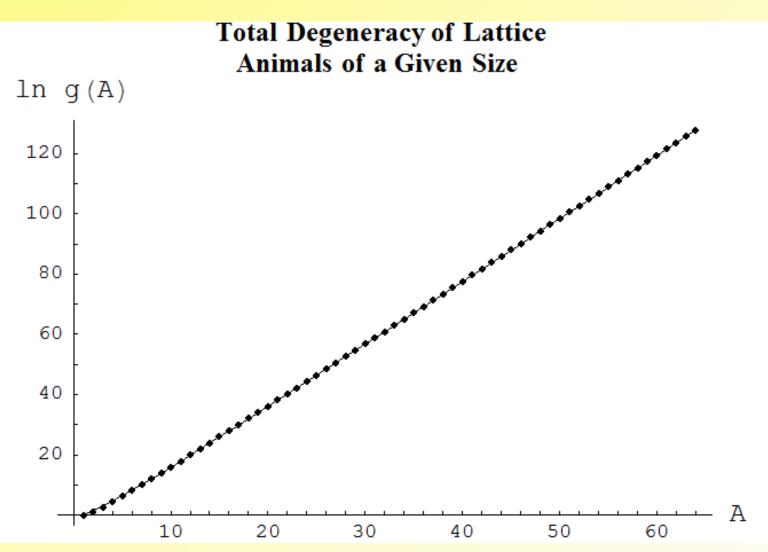
The Hagedorn spectrum !

The (too) many ways of obtaining the Hagedorn spectrum (given the experimental evidence!!)



M (10² MeV)

$g(A) = 0.120705 \text{ A}^{-1.38675} \exp(2.11982 \text{ A})$

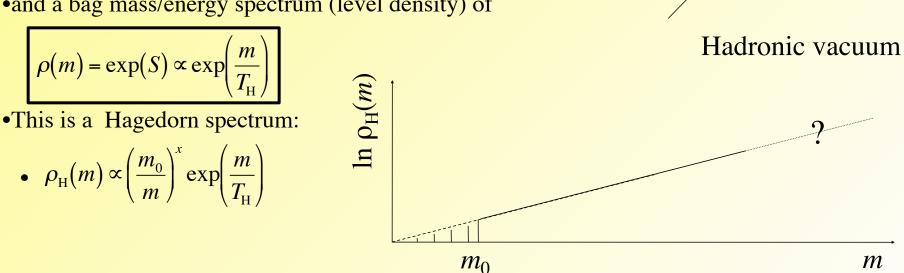


The partonic world (QGP) (a world without surface?)

 $T_{\rm H} = \left(B\frac{90}{\sigma\pi^2}\right)^4$

Partonic vacuum

- •The MIT bag model says the pressure of a QGP bag is constant:
 - $p = \frac{g\pi^2}{\Omega\Omega} T_{\rm H}^4 = B$; g: # degrees of freedom, constant p = B, constant
- •The enthalpy density is then
 - $\varepsilon = \frac{H}{V} = \frac{E}{V} + p = \frac{g\pi^2}{30}T_{\rm H}^4 + B$
- •which leads to an entropy of
 - $S = \int \frac{\delta Q}{T} = \int_{0}^{H} \frac{dH}{T} = \frac{H}{T_{\rm H}} = \frac{m}{T_{\rm H}}$
- •and a bag mass/energy spectrum (level density) of



Can a "thermostat" have a temperature other than its own?

$$T = T_{c} = 273K$$

or
$$0 \le T \le 273K$$

• $S = S_{0} + \frac{\Delta Q}{T} = S_{0} + \frac{E}{T_{0}}$
• $\rho(E) = e^{S} = e^{S_{0} + \frac{E}{T_{0}}}$

• Is *T₀* just a "parameter"?

$$Z(T) = \int dE\rho(E)e^{-E/T} = \frac{T_0T}{T_0 - T}e^{S_0}$$

• According to this, a thermostat, can have any temperature lower than its own!

Equilibrium with Hagedorn bags: Example : an ideal vapor of N particles of mass m and energy ε

•The total level density:

$$P(E,\varepsilon) = \rho_{\rm H}(E-\varepsilon)\rho_{\rm iv}(\varepsilon) = g(m)\frac{V^{N}}{N!\left(\frac{3}{2}N\right)!}\left(\frac{m\varepsilon}{2\pi}\right)^{\frac{3}{2}N}\exp\left(\frac{E-mN-\varepsilon}{T_{\rm H}}\right)$$

Most probable energy partition:

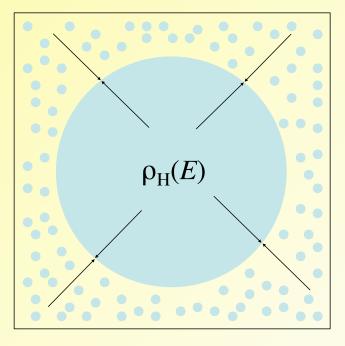
• $T_{\rm H}$ is the system: • $T_{\rm H}$ is the system:

•A Hagedorn-like system is a perfect thermostat.

•If particles are generated by the Hagedorn bag, their concentration is:

$$\frac{\partial \ln P}{\partial N}\Big|_{V} = -\frac{m}{T_{\rm H}} + \ln \left[g(m)\frac{V}{N}\left(\frac{mT_{\rm H}}{2\pi}\right)^{\frac{3}{2}}\right] = 0 \Rightarrow \frac{N}{V} = g(m)\left(\frac{mT_{\rm H}}{2\pi}\right)^{\frac{3}{2}} \exp\left(-\frac{m}{T_{\rm H}}\right)$$

• Volume independent! Saturation! Just as for ordinary water, but with only one possible temperature, $T_{\rm H}!$



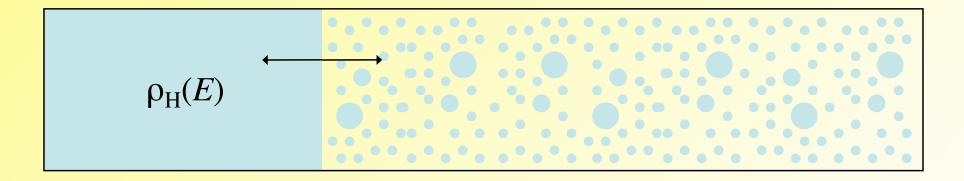
ideal vapor ρ_{iv}

- particle mass = m
- •volume = V
- particle number = N
- •energy = ε

The story so far . . .

1.Anything in contact with a Hagedorn bag acquires the temperature $T_{\rm H}$ of the Hagedorn bag.

2.If particles (e.g. π s) can be created from a Hagedorn bag, they will form a saturated vapor at fixed temperature $T_{\rm H}$.



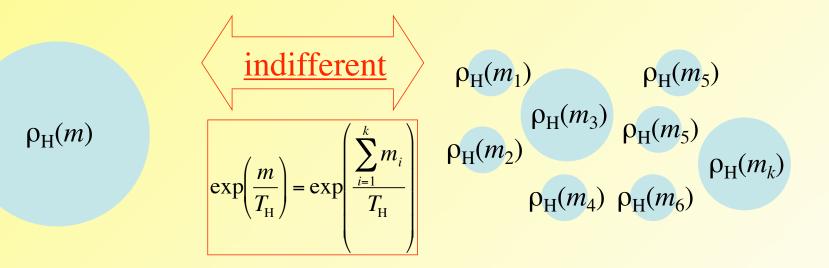
5.If different particles (i.e. particles of different mass *m*) are created they will be in chemical equilibrium.

Now to the gas of bags ...

(Gas of resonances?)

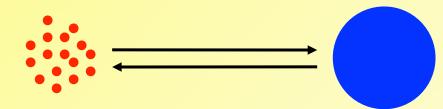
Stability of the Hagedorn bag against fragmentation

•If no translational or positional entropy, then the Hagedorn bag is <u>indifferent</u> to fragmentation.



Resonance gas - A gas without pressure

No intrinsic energy and/or entropy penalty for aggregation



How many particles?

 $1 \le N \le N_{\max}$

Ideal gas law:

$$p = \frac{N}{V}T$$

Resonance Gas Cont'd

$$A \Leftrightarrow nB$$

$$\frac{c_B^n}{c_A} = \frac{q_B^n}{q_A} = \frac{q_A^{n-1}}{n^{3n/2}}$$

$$q_B = \lim_{n \circledast \infty} \frac{c_A^{1/n} q_A^{\frac{n-1}{n}}}{n^{3/2}} = 0$$

$$\varphi_B = \lim_{n \circledast \infty} \frac{c_A^{1/n} q_A^{\frac{n-1}{n}}}{n^{3/2}} = 0$$

Equilibrium with Hagedorn bags:

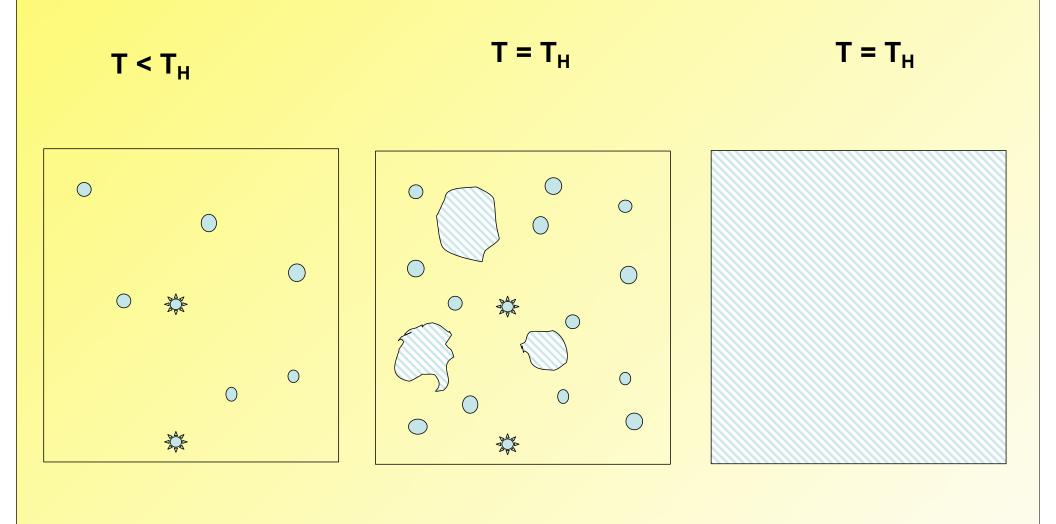
$$\frac{N}{V} = g(m) \left(\frac{mT_{\rm H}}{2\pi}\right)^{\frac{3}{2}} \exp\left(-\frac{m}{T_{\rm H}}\right)$$

$$g(m) = e^{\frac{m}{T_H}}$$

$$\frac{N}{V} = \left(\frac{mT_{\rm H}}{2\pi}\right)^{\frac{3}{2}}$$

ideal vapor ρ_{iv}

- particle mass = *m*
- •volume = V
- particle number = N
- •energy = ε

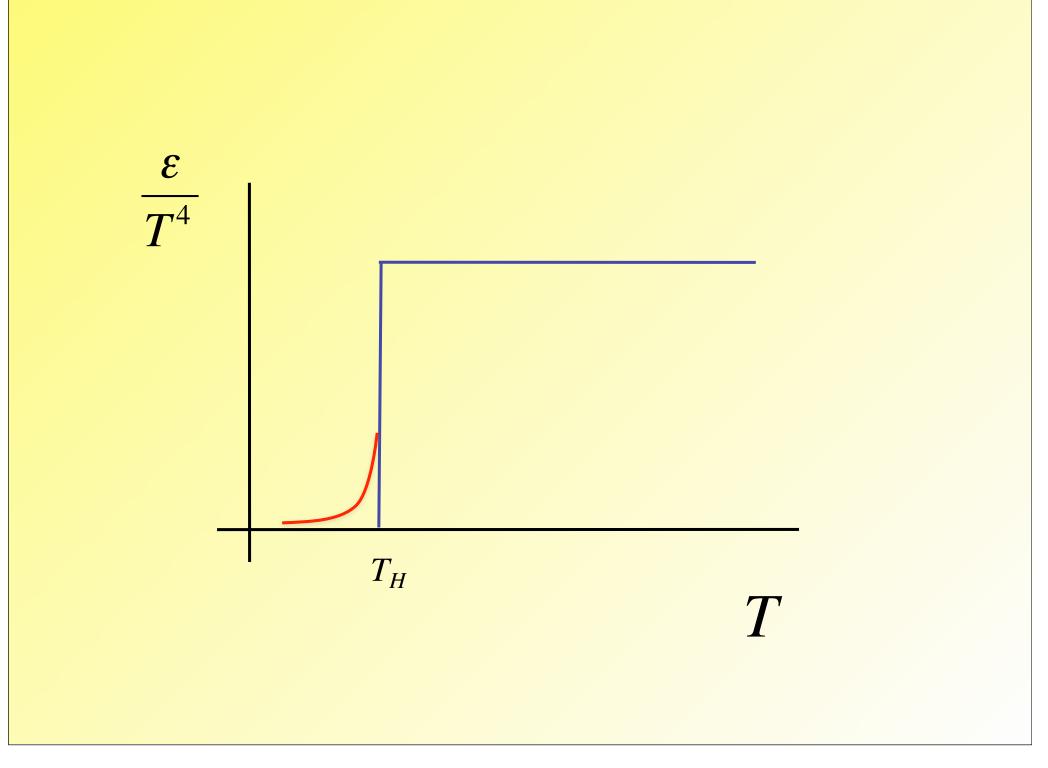


Non saturated gas of π etc.

Gas of bags +

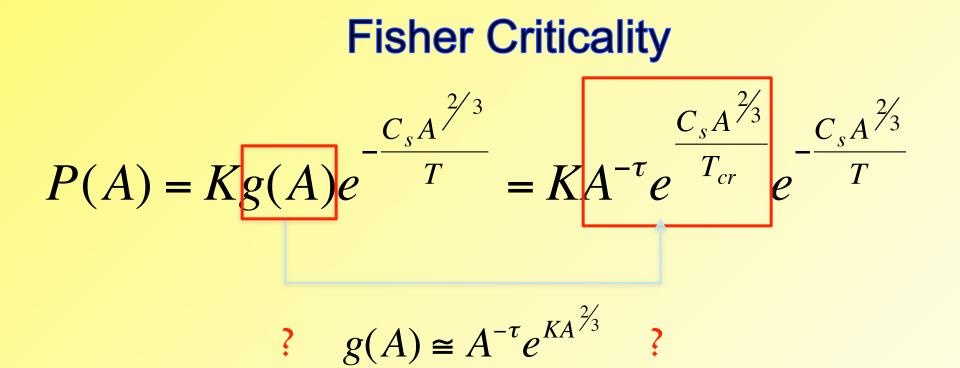
One big bag

saturated gas of π etc.



Bags have no surface energy :

What about criticality?



$$\ln g(A) = SurfaceEntropy = KA^{\frac{2}{3}} = \frac{C_s}{T_{cr}}A^{\frac{2}{3}}$$

This is predicated upon a nearly spherical cluster.

Lattice Animals

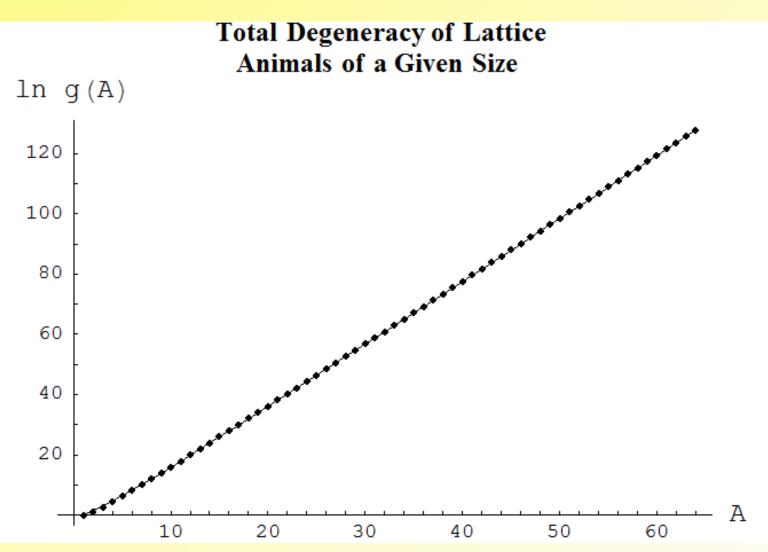
			///		
		//			
	//				
	///				

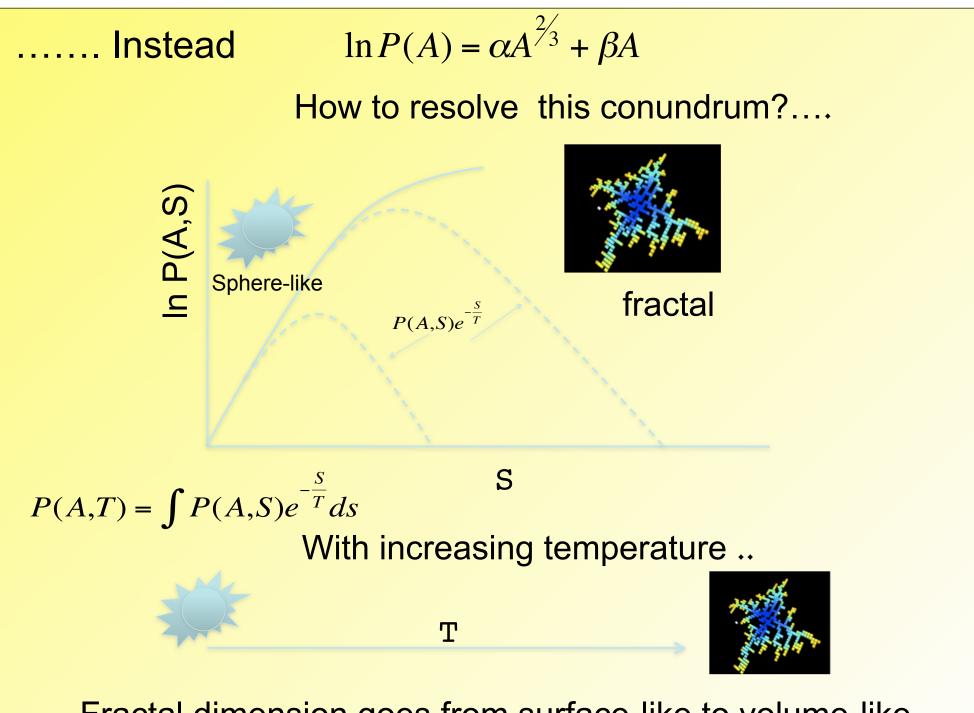
How many animals of size A?

Fisher guesses $\ln P(A) = -\tau \ln A + KA^{\frac{2}{3}}$

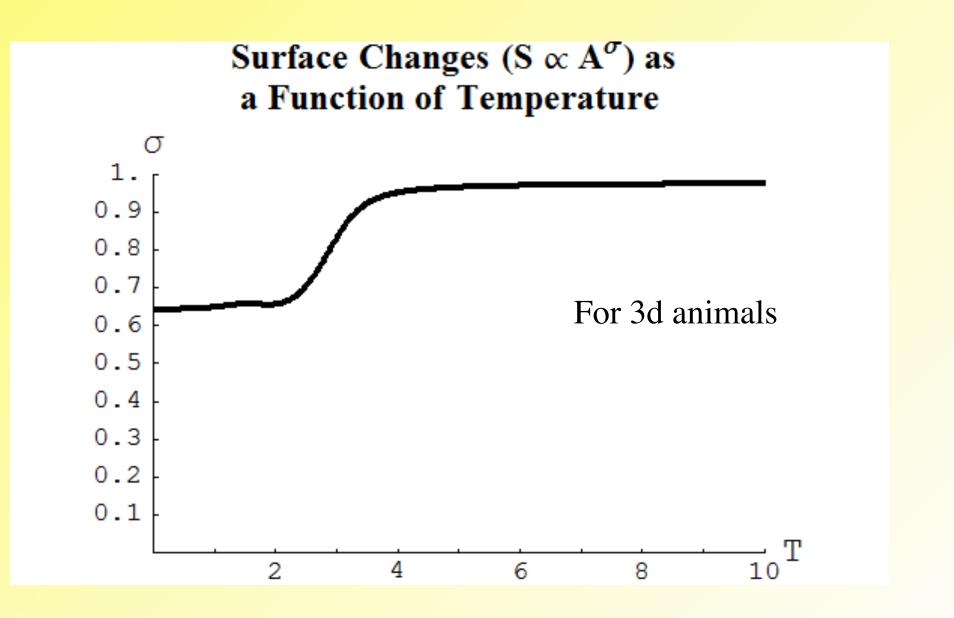
To my knowledge nobody knows exactly why .

$g(A) = 0.120705 \text{ A}^{-1.38675} \exp(2.11982 \text{ A})$





Fractal dimension goes from surface-like to volume-like



```
Back to the bags.....
```

No surface energy, no Boltzmann factor to keep the bag sphere-like.

```
So, at T<sub>H</sub>, the only natural temperature of the bag
fractality ≅ criticality
already appears,
```

although the coexistence of the bag with a non Hagedorn vapor is 1st order.

Can Surface Energy

Save the day?

A bag with a surface?

•Remember the leptodermous expansion:

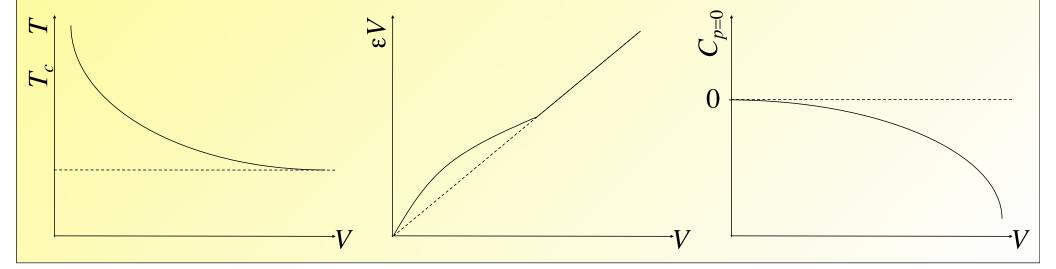
- $M = E \cong H = a_V A + a_S A^{2/3} + a_C A^{1/3}$
- •Notice that in most liquids $a_S \approx -a_V$

•However, in the MIT bag there is only a volume term

• $\varepsilon V = H = [f(T) + B]V + a_S V^{2/3}$ (?)

•Should we introduce a surface term? Although we may not know the magnitude of it, we know the sign (+). The consequences of a surface term:

•
$$p = \frac{1}{3}f(T) - \left(B + \frac{2}{3}a_{s}V^{-1/3}\right) = 0$$
 at equilibrium
• $T = f^{-1}\left[3\left(B + \frac{2}{3}a_{s}V^{-1/3}\right)\right]$



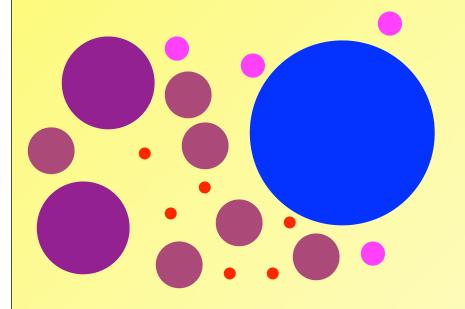
Rumors have it that the bags surface energy coefficient may be negative ! ? !

 $C_{S} < 0$

Could it be that :

What one throws away by neglecting surface entropy One is forced (by data?) to put back with a negative C_S

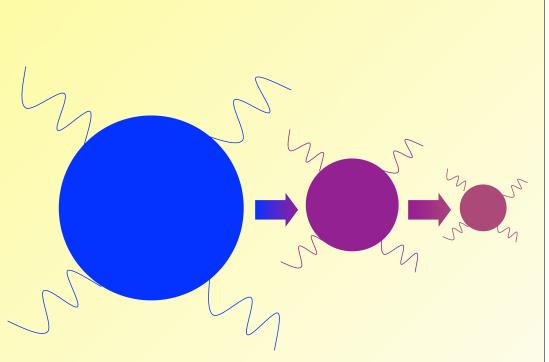
Stability of a gas of bags



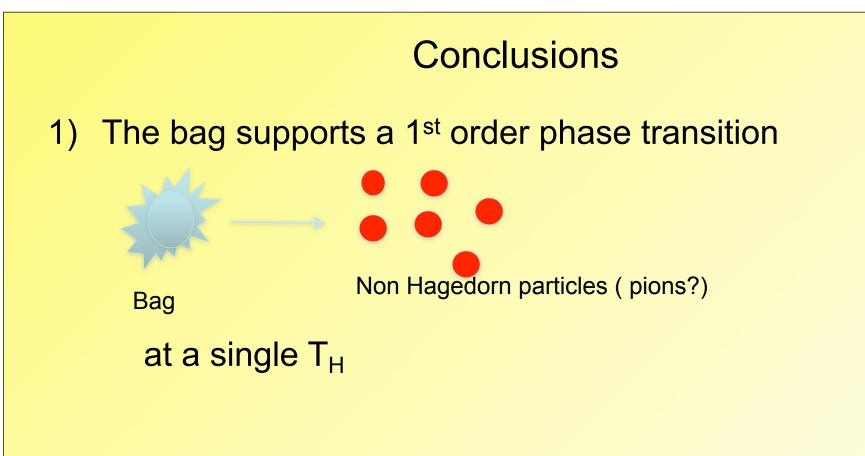
Bags of different size are of different temperature. If the bags can fuse or fission, the lowest temperature solution <u>at constant energy</u> is <u>a single bag</u>. The isothermal solution of many equal bags is clearly unstable.

A gas of bags is always thermodynamically unstable.

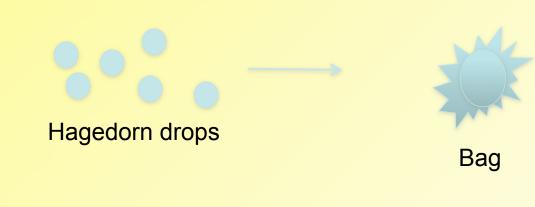
The decay of a bag with surface



A bag decays in vacuum by radiating (e.g. pions). As the bag gets smaller, it becomes **<u>HOTTER!</u>** Like a mini-black hole.

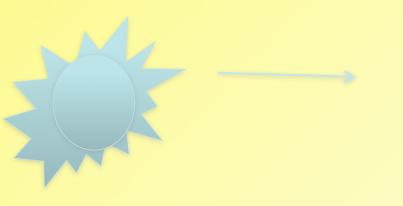


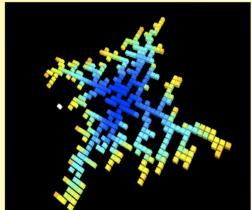
2) A gas of bags is entropically unstable towards coalescence



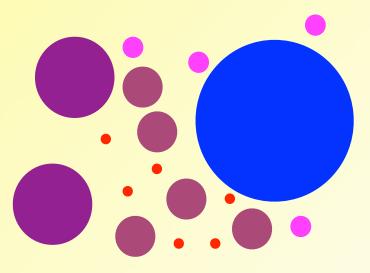
Conclusions ctd..

 The lack of surface energy entropically drives bag to fractal shape





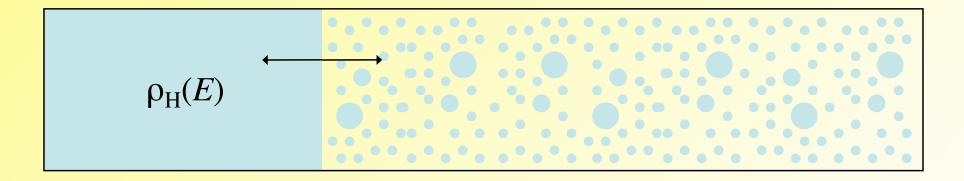
4) Addition of surface energy makes drops non isothermal.



The story so far . . .

1.Anything in contact with a Hagedorn bag acquires the temperature $T_{\rm H}$ of the Hagedorn bag.

2.If particles (e.g. π s) can be created from a Hagedorn bag, they will form a saturated vapor at fixed temperature $T_{\rm H}$.



5.If different particles (i.e. particles of different mass *m*) are created they will be in chemical equilibrium.